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Abstract 

 
The detection of bolts is an important task in high-speed train inspection systems, and it is 
frequently performed to ensure the safety of trains. The difficulty of the vision-based bolt 
inspection system lies in small sample defect detection, which makes the end-to-end network 
ineffective. In this paper, the problem is resolved in two stages, which includes the detection 
network and cascaded classification networks. For small bolt detection, all bolts including 
defective bolts and normal bolts are put together for conducting annotation training, a new loss 
function and a new boundingbox selection based on the smallest axis-aligned convex set are 
proposed. These allow YOLOv3 network to obtain the accurate position and bounding box of 
the various bolts. The average precision has been greatly improved on PASCAL VOC, MS 
COCO and actual data set. After that, the Siamese network is employed for estimating the 
status of the bolts. Using the convolutional Siamese network, we are able to get strong results 
on few-shot classification. Extensive experiments and comparisons on actual data set show 
that the system outperforms state-of-the-art algorithms in bolt inspection. 
 
 
Keywords: Few-shot learning, Siamese network, Small object detection, Non-maximum 
suppression, Convolutional neural networks 
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1. Introduction 

Traditional train inspection is usually executed by the workers to detect. However, this 
method is costly, slow, and inefficient. A machine-vision approach is developed to automate 
inspection of various components of trains, including bolts, catenaries, pantographs, wheel 
rims, wheel sets and more. The vision inspection system inspects the various components of 
trains and estimates their status based on the data captured by the cameras or the laser devices. 
The system is of great significance to assess the quality of trains and prevent future accidents. 
Our research focuses on automatic localizing and estimating bolt defects based on computer 
vision technology. 
Some previous work on visual detection of bolts has been reported. Yunguang Dou et al.[1] 
used a template matching method and a nearest neighbor classifier to determine the position of 
a bolt. Youngjin Cha et al.[2] utilized the Hough transform first, then, a linear support vector 
machine was applied to make a distinction between tight and loose bolts. F Marino et al.[3] 
used two discrete wavelet transforms to pre-process the images, and then employed two 
multi-layer perceptron classifiers. In [4], Lovedeep ramana et al. used the Viola-Jones 
algorithm to detect loosened bolt. In fastener inspection field, a probabilistic structure topic 
model (STM) [5] was employed. In [6], the pixel-wise and histogram similarities based 
approaches were utilized for detection. In [7], an Adaboost based algorithm was used for 
detection. In other target detection fields, [8] adopted a sparse representation to track dynamic 
overhead crane features effectively. In [9], the object-based human identification stage and 
spatial feature-based human identification stage were fused using the fuzzy holoentropy for 
accurate human identification. [10] proposed the algorithms to find randomly moving target in 
unknown environment. Compared with these traditional methods, deep learning based visual 
inspection systems[11-15] showed their superiority after a long period training with a large 
dataset. The comparative study of our method with the existing techniques is shown in Table 
1. 
The inspection robot runs on the track under the train. The camera on a mechanical arm 
captures images at a resolution of 2048*2000, but the size of the bolts is usually 30-40 pixels 
in the image. For visual detection in high-speed train, there are huge numbers of normal bolts 
(including many types of bolts, such as reverse mounting bolts, and hexagon bolts), but only a 
small number of defective bolts (shown in Fig. 1). Therefore, it is difficult for an end-to-end 
object detection networks to detect defective bolts directly. The difficulty of the vision-based 
bolt inspection system lies in the small sizes of the bolts, and a few training samples of the 
defective bolts. In this work, deep learning based two-stage method for visual detection of 
bolts in high-speed train is proposed, which includes the detection network and cascaded 
classification networks. For small bolt detection, we put defective bolts and normal bolts 
together for conducting annotation training. A new loss function based on the smallest 
axis-aligned convex set is proposed to improve the accuracy, and new boundingbox selection 
algorithm to get the maximum coverage of the bolts. These allow YOLOv3 network to obtain 
the accurate position and bounding box of the various bolts, regardless of whether they are 
damaged or missing. Second, each of the located bolts are sent into the trained Siamese 
network one-by-one. Finally, the Siamese network calculates the similarity metric between the 
input bolts and standard template, and estimates the status of the input bolts. To the best of our 
knowledge, the Siamese network is the first to be applied in bolt inspection. Both the detection 
and the classification network have a training and prediction stage. The training stage is 
completed by the server and the prediction stage is executed in the inspection computer. The 
main contributions of our cascade network are summarized as follows: 
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1) The problem of vision-based bolt inspection is resolved in two stages, which includes the 
detection network and cascaded classification networks. 

2) A new loss function and a new boundingbox selection algorithm based on the smallest 
axis-aligned convex set are proposed. By incorporating these two improvements into 
YOLOv3, the average precision has been greatly improved on PASCAL VOC, MS COCO 
and actual data set. 

3) The Siamese network is employed for bolt inspection. The predictive power of the 
convolutional Siamese network can be generalized to new defects that have never been 
seen before. 

 
Table 1. Comparative study of our method with the existing techniques. 

 

Methods Interpreta
bility 

Detection 
Rate  

Recognition 
Rate 

 
 
 
 
 
 
 
 
Tradition
al 
methods 

 
 

One- 
stage 

methods  

STM [5]  
 

 
Strong 

 

Low  
Pixel-wise and histogram 
similarities [6] 

Low  

Adaboost [7] Low  
Sparse Representation [8] Low  
Unknown target search in an 
unknown environment [10]  

Low  

 
 

Two- 
stage 

methods 

Template matching + nearest 
neighbor classifier [1] 

 
 
 

Strong 
 

Low Low 

Hough transform + SVM [2] Low Low 
Wavelet transforms + 
multi-layer perceptron [3] 

Low Low 

Viola-Jones + SVM [4] Low Low 
Viola-Jones + Bayesian 
network [9] 

Low Low 
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methods 

Mask R-CNN [11]  
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Two- 
stage 

methods 

 
The proposed method 
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High 

 
High 
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stage 

methods 

 
SSD+YOLO+VGG [15] 

 
Weak 

 
High 

 
Low 

Small 
sample 
learning 

 
The proposed method 

 
Weak  

 
High 

 
High 
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Fig. 1. Bolt images in CRH380A and CRH380AL High-Speed Trains data sets. The top row is normal 
bolts and the bottom row is defective bolts. The aforementioned data sets are collected from CRH380A 
and CRH380AL High-Speed Trains at ShangHai bullet train station. Which include 100,000 2D images 

and corresponding depth maps of train bottom. 
 
The rest of this paper is organized as follows. In Section 2, the related works of object 
detection and few-shot learning are reviewed. In Section 3, the proposed cascade network, 
YOLOv3 network with a new loss function and a new boundingbox selection algorithm, and 
Siamese network for few-shot learning are explained. In Section 4, the experimental results 
are given. Finally, Section 5 concludes this paper. 

2. Related Work 

2.1 Object detection networks 
Recently, deep learning are wildly used in many fields including digit recognition[16],optical 
character recognition[17], image classification[18-20], object detection[21] and 
tracking[40-42] and semantic image segmentation[22]. Generally speaking, object detection 
algorithms based on deep learning can be divided into two types: two-stage detectors (Fast 
R-CNN[23], Faster R-CNN[24], RFCN[25], MSCNN[26]) and  one-stage detectors (SSD[27] 
and YOLO [28], RefineDet[29]). The speed of one-stage detector is better than that of 
two-stage detector, but the accuracy is slightly lower than that of two-stage detector. From the 
first YOLO[28], YOLOv2[30], the current YOLOv3[31] outperforms most detectors both in 
detection speed and accuracy. YOLOv3 applies a residual skip connection[32] and feature 
pyramid network[33] to get more meaningful semantic information from the up-sampling 
features and finer-grained information from the earlier feature maps. The prediction results are 
selected by Non-Maximum Suppression (NMS). These allow YOLOv3 to detect small object 
more accurately. In this work, we put defective bolts and normal bolts into one class for 
conducting annotation training, and detect bolts based on YOLOv3 with new loss function and 
new boundingbox selection algorithm. 

2.2 Few-shot learning 
Early studies about one or few-shot learning [34-35] focus on image fields and can be divided 
into three categories. First, model-based few-shot learning [36] offers the ability to encode and 
retrieve new information with new architecture. Second, metric-based few-shot learning [37] 
conducts classification by measuring the distance between the samples in a batch set and the 
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samples in a support set. Third, optimization-based few-shot learning [38] performs small 
sample learning by using new optimization. In the visual inspection of bolts in high-speed 
train, there are few defective bolts (including damaged and partially worn or missing bolts) 
because of the high manufacturing standard of the high-speed train. But a large number of 
sample pairs (including genuine sample pairs and imposter sample pairs) based on the metric 
can be obtained. In this work, we learn about image representations via a supervised 
metric-based approach with Siamese network. The network is able to learn information about 
object classes from one, or only a few, training samples, which uses many layers of 
non-linearities to capture invariance of transformation with the sample pairs from massive 
normal bolts and a few defective bolts. After transformation, all normal samples are clustered 
together and defective samples are placed far away from all normal samples.  

3. Cascade Network for Visual Inspection of Bolts 

3.1 cascade network 
The proposed network for bolt detection is shown in Fig. 2. Cascade network includes the 
object detection and cascaded classification networks, which is a two-stage strategy. YOLOv3 
network with a new loss function and a new boundingbox selection is used for detection, and 
Siamese network is for classification. Input images are first input into the detection network. 
Various bolts in the image are localized, despite the fact that they may be damaged or missing. 
Second, images from all of the located bolts are cropped and sent into the trained Siamese 
network one-by-one. Finally, the Siamese network estimates the status of the target bolts 
based on the similarity metric between the input bolt and the standard template. 

Our algorithm can be extended to multi-component detection with the same framework. 
Learn from the concept of virtual objects [39], we treat bolts, catenaries, and pantographs in a 
general way. Different components are detected with the detection network in single inference, 
and sent to Siamese networks associated with the different components to estimate their status. 
 

 
Fig. 2. The cascade network under two classes of bolts (reverse mounting bolts and hexagon bolts). The 

detected bolts are fed into two Siamese networks by class. 
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3.2 The smallest convex set based loss function and boundingbox selection 
algorithm for small object detection 
Small object detection is difficult for target detection. This is because the images generated 
from smaller objects are low-resolution and contain less information than larger objects[43]. 
In our bolt detection system, each type of bolt should be detected in the detection step of the 
cascade network. Otherwise, undetected bolts will not be passed to the Siamese networks. To 
locate as many bolts as possible, we put defective bolts and normal bolts into one class for 
conducting annotation training. 
YOLOv3 is suitable for small object detection task, whose boundingbox regression loss 
function is: 

( ) ( ) ( ) ( )
2 2 222 2

0 0 0 0

ˆˆ ˆ ˆMSE  
S B S B

obj j j obj j j j j
Loss coord ij i i i i coord ij i i i i

i j i j
x x y y w w h hλ λ

= = = =

  = Ι − + − + Ι − + −     
∑∑ ∑∑

Where obj
ijΙ  denotes that the thj  bounding box predictor in cell i  is “responsible” for that 

prediction. The ( ),x y  coordinates represent the center of the box relative to the bounds of the 
grid cell and the ( ),w h  are the width and height of the box relative to the whole image.  MSE 
loss is not quite consistent with accuracy improvement. To bridge the gap between the 
Intersection over Union (IoU) metric and the distance loss function that is used for 
boundingbox regression, Hamid Rezatofighi et al.[44] introduced the Generalized Intersection 
over Union (GIoU) as a new metric and a new loss function for boundingbox regression. GIoU 
focus on overlapping region of predicted boundingbox and groundtruth box, and non 
overlapping region of predicted boundingbox and groundtruth box. For small object detection, 
GIoU unable to reflect the extent to which the predicted boundingbox covers the groundtruth 
box. In this work, a new loss function convexIoUL   for small object detection is proposed based on 
the smallest convex set enclosing predicted boundingbox and groundtruth box. convexIoUL  focus 
on increasing the proportion of overlapping region to the smallest convex set and reducing the 
proportion of non overlapping region to the smallest convex set. The smallest axis-aligned 
convex set of predicted boundingbox and groundtruth box is shown in Fig. 3(a). 

 
Fig. 3. The smallest axis-aligned convex set. (a) the predicted boundingbox  A, the groundtruth box B 
and the smallest axis-aligned convex set C which encloses both A and B (C is shown in dashed line). 
The grey area is A B∩ , and the blue area is ( )C A B− ∪ . (b) all the detection boxes including the 

box dBox   with the maximum score and all other detection boxes with a significant overlap with dBox  , 
and their smallest axis-aligned convex set C (shown in dashed line). 
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For predicted boundingbox  A and groundtruth box B, , nA B S R⊆ ∈ , C is the smallest 
convex set enclosing A and B. Both A and B are axis-aligned bounding box, therefore their 
smallest convex set nC S R⊆ ∈   has rectangular shape. We calculate the difference between 

A B∩   and ( )C A B− ∪ . Then we get the ratio between the aforementioned difference and the 
smallest axis-aligned convex set C, namely IoU based on the convex set convexIoU  . 

( ) ( )=
A B A B C

convexIoU
C

∩ + ∪ −                                                                              (1) 

Finally, the loss function 1convexIoUL convexIoU= − . Similar to GIoU, convexIoU  is invariant 
to the scale, and convexIoUL   satisfies non-negativity, identity of indiscernibles, symmetry and 
triangle inequality. Compare with GIoU, convexIoU  focus more on increasing the proportion 
of overlapping region to the smallest convex set and reducing the proportion of non 
overlapping region to the smallest convex set. Therefore, convexIoU  can reflect the extent to 
which the predicted boundingbox covers the groundtruth box. And 

( ) ( ), ,    , ,A B S convexIoU A B GIoU A B∀ ⊆ ≤                                                              (2) 

( ), ,    -1 , 1A B S convexIoU A B∀ ⊆ ≤ ≤                                                                          (3) 

Therefore, optimizing convexIoU  as loss, convexIoUL is suitable for small object detection. The 
calculation of convexIoUL   is summarized in Alg.1. 
For the bolts on High-Speed train, there are no occlusion between the bolts. Consequently, the 
predicted boundingbox with the maximum coverage is helpful for subsequent identification. 
But Non-Maximum Suppression (NMS) for selecting the best prediction boundingbox from 
all detection boxes is hard to get the maximizing coverage of the target. In YOLOv3 and other 
popular 2D object detectors, the score of the detection box is unrelated to position accuracy.  
To maximize coverage the object, our final prediction box is set as the smallest convex set 
which encloses the detection box dBox  with the maximum score and all other detection boxes 
with a significant overlap (we set the pre-defined threshold to 0.5 in this paper) with dBox  . The 
smallest convex set nC S R⊆ ∈  has rectangular shape because all detection boxes are 
axis-aligned bounding box. The smallest axis-aligned convex set of the detection boxes is 
shown in Fig. 3(b) and the boundingbox selection algorithm based on the smallest convex set 
is shown in Alg. 2. Cooperating the convexIoUL  and the boundingbox selection algorithm into 
YOLOv3 is called YOLOv3 with new improvements in this paper. 
 

Alg 1. Loss function based on the smallest axis-aligned convex set of predicted box and ground 
truth box 
Input: Predicted pB  and ground truth gB  bounding box coordinates: 

( ) ( )1 1 2 2 1 1 2 2, , , , , , ,p p p p p g g g g gB x y x y B x y x y= =  ,  

Output: convexIoUL   
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1. For the predicted box, ensuring 2 1
p px x>  and 2 1

p py y>  

( ) ( )
( ) ( )

1 1 2 2 1 2

1 1 2 2 1 2

ˆ ˆmin , ,  max ,

ˆ ˆmin , , max ,

p p p p p p

p p p p p p

x x x x x x

y y y y y y

= =

= =
  

2. Calculating area of gB : ( ) ( )2 1 2 1
g g g g gA x x y y= − × − . 

3. Calculating area of pB : ( ) ( )2 1 2 1
p p p p pA x x y y= − × − . 

4. Calculating intersection I between pB  and gB : 1 1 1 2 2 2

1 1 1 2 2 2

ˆ ˆmax( , ),  min( , )
ˆ ˆmax( , ), min( , )

I p g I p g

I p g I p g

x x x x x x
y y y x y y
= =

= =
  

( ) ( )2 1 2 1 2 1 2 1   if   

0               

I I I I I I I Ix x y y x x and y y
I

otherwise

 − × − > >= 


  

5. Calculating area of the smallest convex set: 

( ) ( )

1 1 1 2 2 2

1 1 1 2 2 2

2 1 2 1

ˆ ˆmin( , ),  max( , )
ˆ ˆmin( , ), max( , )

C p g C p g

C p g C p g

C C C C C

x x x x x x
y y y y y y

A x x y y

= =

= =

= − × −

 

6. 
p g C

C

A A AconvexIoU
A

+ −
=   

7. 1convexIoUL convexIoU= −  

 
 

Alg 2. The boundingbox selection based on the smallest convex set of detection boxes 
Input: coordinates of the detection boxes dBox with the maximum score and all other  

detection boxes with a significant overlap with dBox :  

( ) ( ) ( )1 1 1 1 2 2 2 2 2 3 3 3 3 3
1 1 2 2 1 1 2 2 1 1 2 2, , , , , , , , , , , ...d d dBox x y x y Box x y x y Box x y x y= = =    

Output: coordinates of the predicted boundingbox: ( )1 1 2 2, , ,p p p p
pB x y x y=  

1. For all candidate detection boxes, ensuring 1 1 1 1 2 2 2 2
2 1 2 1 2 1 2 1; ;...x x y y x x y y> > > >， ，  

( ) ( )
( ) ( )

1 1 2 2 1 2

1 1 2 2 1 2

ˆ ˆmin , ,  max ,
ˆ ˆmin , , max ,

x x x x x x

y y y y y y

= =

= =
  

2. 
1 2 1 2

1 1 1 1 1 1
1 2 1 2

2 2 2 2 2 2

ˆ ˆ ˆ ˆmin( , ,...),  min( , ,...)
ˆ ˆ ˆ ˆmax( , ,...), min( , ,...)

p p

p p

x x x y y y
x x x y y y

= =

= =
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3.3 Ablation Study 
In this section, we first evaluate the proposed method by incorporating convexIoUL  losses into 
YOLOv3 algorithm on PASCAL VOC[45] and MS COCO[46] two data sets. The specific 
configurations of their training protocol and evaluation can be found in reference [45] and [46]. 
We use the original Darknet implementation of YOLOv3 framework and follow their 
parameters. The MSE loss function is replaced with IoUL  , GIoUL  and  convexIoUL  losses, and we 
use the new boundingbox selection algorithm. We train the network using each loss for 40K 
iterations with a batch size of 32. The models are trained with 4 Nvidia GTX 1080Ti GPUs 
and tested on the computer with an Intel Corei5-6600k, 32G RAM and GPU NIVIDIA GTX 
1080Ti. The performance comparison has been reported in Table 2 and Table 3. We use AP 
( ( 50 55 ... 90 95) 10AP AP AP AP+ + + + , where 50AP  means mAP with IoU threshold of 
0.50 and 95AP  means mAP with IoU threshold of 0.95) and AP75 ( mAP with IoU threshold 
of 0.75) as performance measurement, i.e.,. For PASCAL VOC 2007 data sets, we report 
results using IoU and GIoU metric. For MS COCO 2018 data sets, we report results using IoU 
metric only. 
As shown in Table 2, GIoU achieves performance with relative improvement of 3.47% AP 
and 5.56% AP75 using IoU as evaluation metric. While convexIoUL  loss achieves performance 
with relative improvement of 5.20% AP and 7.81% AP75 using IoU as evaluation metric. And 

convexIoUL  loss combined with new boundingbox selection brings improvements of 5.85% AP 
and 8.84% AP75. As shown in Table 3, convexIoUL  loss achieves performance with relative 
improvement of 6.05% AP and 11.41% AP75 using IoU as evaluation metric. And convexIoUL  
loss combined with new boundingbox selection brings improvements of 9.87% AP and 12.61% 
AP75.  Table 2 and Table 3 show the advantage of YOLOv3 with new improvements for 
target detection. 
 

Table 2. Performance comparison of YOLOv3 trained by using MSE, IoUL  , GIoUL  and convexIoUL  
losses. The results are on the PASCAL VOC 2007 test set. 

Loss/ Evaluation AP 
IoU                     GIoU 

 

AP75 
IoU                     GIoU 

 
MSE   0.461             0.451                  0.486              0.467 

IoUL   
Relative improve% 

0.466  
 1.08%                    

0.460    
1.99%                           

0.504  
3.70%                       

0.498 
6.64% 

GIoUL   
Relative improve% 

0.477   
3.47%            

0.469    
3.99%              

0.513 
5.56%              

0.499 
6.85% 

convexIoUL   
Relative improve% 

0.485   
5.20%                              

0.477 
5.76%                                         

0.524  
 7.81%                              

0.515 
10.25% 

YOLOv3 with new 
improvements 

Relative improve% 

 
0.488    

5.85%         

 
0.480     

6.43%                          

 
0.529   

 8.84%                   

 
0.520 
11.34%   
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Table 3. Performance comparison of YOLOv3 trained by using MSE, IoUL  , GIoUL  and convexIoUL  
losses. The results are on the MS COCO 2018 test set. 

Loss/ Evaluation AP 
IoU                                  

AP75 
IoU             

MSE     0.314                              0.333 
IoUL   

Relative improve% 
0.321      

  2.18%                                             
0.348 
4.31% 

GIoUL   
Relative improve% 

0.333   
 5.75%                                                     

0.362 
8.01% 

convexIoUL   
Relative improve% 

  0.340     
6.05%                                            

0.371 
11.41% 

YOLOv3 with new 
improvements 

Relative improve% 

 
0.345      

   9.87%                                         

 
0.375 
12.61% 

 
Secondly, we test the proposed method on CRH380A and CRH380AL High-Speed Trains 
data sets, which include a total of 100,000 images. We divide the whole set into training set, 
validation set and test set according to the ratio 6:2:2. We report the IoU metric in the 
following experiments. We replace MSE loss function with GIoUL  and convexIoUL , and use new 
boundingbox selection algorithm. We test YOLOv3, YOLOv3 with GIoU, and YOLOv3 with 
new improvements in three situations. First, we conduct annotation training by classifying all 
bolts in one of four classes (channel bolt, baseplate bolt, reverse mounting bolt and hexagon 
bolt), and defective bolts are put into any class. The performance comparison is shown in 
Table 4. Then, all bolts are classified as reverse mounting bolts or hexagon bolts, and 
defective bolts are put into any class. The performance comparison of this phase is shown in 
Table 5. Finally, we place all the bolts (including defective bolts) into one class for conducting 
annotation training, and the performance comparison is shown in Table 6. The precision, 
recall and AP are used as performance measurement of object detection. As shown in Table 4, 

convexIoUL  loss combined with new boundingbox selection algorithm achieves performance with 
relative improvement of 14.65% AP and 14.75% AP75 using IoU as evaluation metric. In 
Table 5, convexIoUL  loss combined with new boundingbox selection algorithm achieves 
performance with relative improvement of 11.16% AP and 10.73% AP75 using IoU as 
evaluation metric. In Table 6, convexIoUL  loss combined with new boundingbox selection 
algorithm achieves performance with relative improvement of 10.89% AP and 11.90% AP75 
using IoU as evaluation metric. Compared with PASCAL VOC and MS COCO data sets, the 
CRH380A and CRH380AL High-Speed Trains data sets are specialized in small bolt data sets. 
The results show that YOLOv3 with new improvements is more suitable for small bolt 
detection. From Table 4 through Table 6, we can see that the finer the classification, the lower 
the precision, recall and AP. This proves that training with emphasis on low-level category 
classification only cannot capture reliable information.  
In the following experiments, we place all the bolts (including defective bolts) into one class 
for conducting annotation training, and we do not adjust regularization parameters between 
bounding box loss and classification loss. Fig. 4 is accuracy (average IoU) against training 
iterations when YOLOv3 is trained using MSE loss as well as GIoUL  and convexIoUL . Fig. 4 shows 
that YOLOv3 with new improvements significantly improves the localization accuracy of the 
bolts. Fig. 5 is the detection examples using YOLOv3, YOLOv3 with GIoU, and YOLOv3 
with new improvements, one can see the detection boxes by YOLOv3 with new improvements 
are more accurate than that by YOLOv3 and YOLOv3 with GIoU.  
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Table 4. Performance comparison of YOLOv3 trained by using MSE, IoUL , GIoUL  and convexIoUL  
losses. The results are on the CRH380A and CRH380AL High-Speed Trains data sets. All bolts are 
classified as four classes (channel bolt, baseplate bolt, reverse mounting bolt and hexagon bolt) for 

conducting annotation training, and defective bolts are put into any class. 
 

Loss/ Evaluation AP 
IoU                                  

AP75 
IoU             

Precision Recall 

MSE   0.389                                   0.393              96.25% 93.04% 

IoUL   
Relative improve% 

0.408     
 

4.88%                                                

0.415    
 
5.59%               

96.86% 94.51% 
 

GIoUL   
Relative improve% 

0.420   
   

7.96%                                                   

0.427      
 
8.65%             

97.01% 95.99% 

convexIoUL   
Relative improve% 

0.438  
 

12.5%                                                

0.44    
 
11.9%                

97.54% 96.50% 

YOLOv3 with new 
improvements 

Relative improve% 

0.446 
  

  14.65%                                                       

0.451 
   
14.75%                

98.10% 97.75% 

 
 

Table 5. Performance comparison of YOLOv3 trained by using MSE, IoUL  , GIoUL  and convexIoUL  
losses. The results are on the CRH380A and CRH380AL High-Speed Trains data sets. All bolts are 

classified as reverse mounting bolts or hexagon bolts, and defective bolts are put into any class. 
 

Loss/ Evaluation AP 
IoU                                  

AP75 
IoU             

Precision Recall 

MSE     0.403                                                                  0.410                          96.73%         93.80% 

IoUL   
Relative improve% 

  0.414  
   

   2.72%                                                  

0.421  
  
2.68%               

97.46% 96.63% 

GIoUL   
Relative improve% 

  0.425  
    

   5.45%                                                  

0.430  
  
4.87%                 

97.85% 97.78% 

convexIoUL   
Relative improve% 

0.439 
    

8.93%                           

0.442 
   
7.80%   

98.12% 98.27% 

YOLOv3 with new 
improvements 

Relative improve% 

0.448  
 

11.16%                          
                             

0.454  
  
10.73%                

98.90% 98.79% 
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Table 6. Performance comparison of YOLOv3 trained by using MSE, IoUL  , GIoUL  and convexIoUL  
losses. The results are on the CRH380A and CRH380AL High-Speed Trains data sets. All 

bolts(including defective bolts) are placed into one class for conducting annotation training. 
 

Loss/ Evaluation AP 
IoU                                  

AP75 
IoU             

Precision Recall 

MSE   0.413                                                               0.420                             97.35%       94.56% 

IoUL   
Relative improve% 

0.421   
 

1.93%                                                     

0.431   
2.61%               

98.02% 96.54% 

GIoUL   
Relative improve% 

0.429  
 

3.87%                                                      

0.440  
 
4.76%                 

98.60% 98.45% 

convexIoUL   
Relative improve% 

0.441  
 

6.77%                                                  

0.451 
   
7.38%                  

99.07% 99.34% 

YOLOv3 with new 
improvements 

Relative improve% 

0.458   
 

10.89%                                                    

0.470 
 
11.90%                   

99.40% 99.83% 

 

 
 

Fig. 4. The accuracy (average IoU) against training iterations when YOLOv3 was trained by using MSE 
loss, GIoUL  and convexIoUL . 
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Fig. 5. The detection examples using YOLOv3(shown in blue line),YOLOv3 with GIoU(shown in 

green line), and YOLOv3 with new improvements(shown in red line). 
 

3.4 Siamese network for few-shot learning 
The architecture of Siamese networks [37] is shown in Fig. 6. Let   x and x′ be a pair of images, 
they are genuine pairs if the images   x and x′ belong to the same class (all positive or all 
negative samples) and impostor pairs otherwise. Let W be the shared parameters that are 
obtained by averaging the back-propagation calculated value from   x and x′  branch. Let 

( )xϕ   and ( )xϕ ′   be the two points in the high-dimensional space that are generated by 

mapping   x and x′ . Let ( ) ( )x xϕ ϕ ′−  be the similarity measurement between   x and x′ . 

Therefore, ( ) ( )( )x xσ ϕ ϕ ′−  is the output probability, where σ is sigmoidal activation 
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function. The regularized cross-entropy function for one pair ix  and ix′   is: 

( ) ( ) ( )( ) ( ) ( ) ( )( ) 2log 1 log 1 T
i i i i i i iL Y Y x x Y x x Wσ ϕ ϕ σ ϕ ϕ λ   ′ ′= − + − − − +           (4) 

Where, 

1             
0                                                      .

i i
i

if x and x are belong to the same class
Y

otherwise
′

= 
   

We fix a minibatch size of 128 with learning rate jη  , momentum jµ  , and 2L  regularization 

weights jλ  defined layer-wise. The updated rule at epoch n  is as follows: 

( ) ( ) 2( ) ( ) ( ), , 2n n n T
kj i i kj kj i i j kjW x x W W x x Wλ′ ′= + ∆ +

                                                              (5) 

( )( ) ( ) ( 1),n n n
kj i i j kj j kjW x x W Wη µ −′∆ = − ∇ + ∆

                                                                         (6) 

Where kjW∇   is the partial derivative with respect to the weight kjW between the thj  neuron in 
some layer and the thk  neuron in the successive layer. We used the same weight 
initialization and learning schedule as proposed by Gregory [37]. Once the convolutional 
Siamese network has been tuned, we can capitalize on powerful discriminative features to 
generalize the predictive power of the network to new samples.  

We set x′  branch as a standard template and x  branch as a cropped bolt image. Both 
  x and x′ are normalized at 64 64× . When the cropped bolts are sent into the trained Siamese 

network, their states are estimated based on the probability of the output similarity 
measurement. We used Pytorch implementation of Siamese networks. The model is trained on 
the computer with an Intel Corei5-6600k, 32G RAM and GPU NIVIDIA GTX 1080Ti. 

 
Fig. 6. The architecture of Siamese network. 
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4. Experimental Results 
 
In the same training set, validation set and test set of the CRH380A and CRH380AL 
High-Speed Trains data sets, all bolts are classified in one class for conducting annotation 
training. The time complexity and the space complexity of the proposed cascade network are 

2 2
1

1
~ ( )

D

l l l l
l

Time O M K C C−
=

• • •∑  and 2 2
1

1 1
~ ( )

D D

l l l l l
l l

Space O K C C M C−
= =

• • + •∑ ∑ , respectively. 

Where D is the depth of the cascade network including YOLOv3 and Siamese network. 2
lM

is the size of the feature map of the thl  convolutional layer, and 2
lK is the size of the kernel of 

the thl convolutional layer. 1lC − is the number of output channels of the ( )1 thl −  
convolutional layer, lC is the number of output channels of the thl  convolutional layer. The 
whole cascade network is lightweight network, and it runs at 20 FPS (frames per second) on 
the computer with an Intel Corei5-6600k, 32G RAM and GPU NIVIDIA GTX 1080Ti. We 
use accuracy, precision, recall, f1-score and ROC curve as the evaluation criteria of the 
proposed algorithm. 
The performance comparison of different algorithms is shown in Table 7. The second and 
third column are end-to-end defect detection network, the accuracy, precision, recall and 
f1-score of classification are the same as that of detection. The results show that end-to-end 
network is not suitable for defect detection of bolts in High-speed train. The forth column is 
SSD+YOLO+VGG, and we use YOLOv3 with new improvements + VGG network in the fifth 
column. The last column is our proposed cascade network. Table 7 shows the high reliability 
and precision of the proposed algorithm. The Fig. 7 is ROC curves of different algorithms, 
which are created by plotting the true positive rate against false positive rate at various 
threshold settings. As shown in the Table 7 and Fig. 7, two-stage methods and three-stage 
methods are better than one-stage methods, and our cascade network outperforms the other 
methods because of improvement of detection network and small sample learning network.  
 

Table 7. Performance comparison of different algorithms. 
Algorithms Mask 

R-CNN 
 

YOLOv3 with 
new 
improvements 

SSD 
+YOLO 
+VGG 

YOLOv3 with 
new 
improvements 
+ VGG 

YOLOv3 with 
new 
improvements 
+ Siamese 

FPS 40 40                                      15 20                        20 
Accuracy 50.01% 52.33% 79.03% 79.20% 99.15% 
Precision 79.30% 81.79%                                80.96% 81.16%       98.61% 

Recall 28.94%. 30.50%                                78.58% 78.82%                   99.76% 
F1-score 0.4240 0.4443 0.7975 0.7997 0.9918 
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Fig. 7. ROC curves of different algorithms. 

5. Conclusion 
 
In this paper, cascade network based two-stage method for visual detection of the bolts in 
high-speed trains is proposed. By incorporating the new loss function and the new 
boundingbox selection algorithm into YOLOv3 framework, the detection network can obtain 
the position and the bounding box of the various bolts in any condition. The Siamese network 
is employed for few-shot learning. The output of the Siamese network is the probability of the 
output similarity measurement, and this measurement is used to determine the status of the 
detected bolt. The effectiveness of the cascade network based bolt detection system was 
verified at WuHan bullet train station. Overall, the proposed approach shows a promising 
application in bolt inspection. Nevertheless, the results suggest some further improvements.  
1) In our bolt inspection system, detection stage is the premise of subsequent classification. 

Therefore, object detection based on RGB-D data and data augmentation should be tried 
to improve the detection capability.  

2) We consider introducing attention mechanism to capture long-range dependencies and 
contextual information. 

3) The edge computing of the proposed algorithm should be implemented to speed up the 
processing at the end.  
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